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The mode-coupling theor§MCT) of dense liquids marks the dynamical glass transition by a critical tem-
peratureT that is reflected in the temperature dependence of a number of physical quantities. Here, molecular-
dynamics simulation data of a model adapted tg K, g are analyzed to dedude. from different quantities
and to check the consistency of the estimated values. Analyzed are the critical temp€gdfama (i) the
nonvanishing nonergodicity parameters as asymptotic solutions of the MCT equations in the arrest@d state,
the g,, parameters describing the approach of the melt towards the arrested state on the ergogiio shde,
diffusion coefficients in the melt, an@v) the a-relaxation time. The resulting, values are found to agree
within about 10%. In addition, the time dependent memory kernel is calculated from the MCT for the inco-
herent intermediate scattering function arouhdand compared with the kernel obtained by inverting the
molecular dynamics data for the corresponding correlator.
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I. INTRODUCTION peratureT,. Including transverse currents as additional hy-
drodynamic variables, the full MCT shows no longer a sharp
At present the phenomena behind the liquid-glass transitransition atT but all structural correlations decay in a final
tion and the nature of the glassy state are not fully undere procesd?2]. Similar effects are expected from inclusion of
stood, despite the progresses of recent years. In contrast tieermally activated matter transport, that means, diffusion in
usual phase transformations the glass transition seems to ke arrested stafel0,11].
primarily dynamical in origin[1,2] and therefore new theo-  |n the full MCT, the remainders of the transition and the
retical approaches have to be developed for its descriptioRsa|ue of T, have to be evaluated, e.g., from the approach of
Several theoretical models have been proposed to explain thge yndercooled melt towards the idealized arrested state,
transition and the corresponding experimental data. The lajiner by analyzing the time and temperature dependence in
ter concern boththe temperature dependence of particular the B regime of the structural fluctuation dynamid2—14
propgrtieg such as thg shear viscosity and the SFWCt“Ya' Cor by evaluating the temperature dependence of the so-called
laxation time, andhe time dependent responae visible in G paramete[15,16]. There are further possible ways to

the dielectric susceptibility, inelastic neutron scattering, an stimateT. e.q.. from the temperature dependence of the
light scattering spectra investigations. The spectral measuré c: 0. P P

ments have been extended to cover the large frequency rangiusion coefficients or the relaxation time of the final
from below the primarye-relaxation peak up to the high- decay in the melt, as Ehyese quantities for T, display a
frequency region of microscopic dynamics dominated by vi-critical behavior| T—T,|=?. However, only crude estimates
brational mode$3,4]. of T, can be obtained from these quantities, since figdhe
One of the promising theoretical approaches in this fieldcritical behavior is mas_ked by the effects of transverse cur-
is the mode-coupling theoryMCT). The MCT originally ~ "€nts and thermally activated matter transport, as mentioned
was developed to model critical phenoméBés]. The non-  above. _ _
classical behavior of the transport properties near the critical On the other hand, as emphasized and appli¢d7r-19,
point was thought to be caused by nonlinear couplings bethe value ofT; predicted by the idealized MCT can be cal-
tween slow(hydrodynamic and order parametenodes of culated once the partial structure factors of the system and
the system. In later years, the MCT was found to be app"lheir_ temperature dependence_ are sufficiently well knowr_L
cable more generally to describe nonlinear effects in densBesides temperature and particle concentration, the partial
liquids [7] and nonhydrodynamic effects in the case of thestructure factors are the only significant quantities that enter
glass transition. the equations of the so-called nonergodicity parameters of
In its simplest(“idealized”) version, first analyzed in the the system. The latter vanish identically for temperatures
“schematic” approach by Bengtzeliuat al. [8] and inde- aboveT, and their calculation thus allows a rather precise
pendently by Leutheuss€®], the MCT predicts a transition Qeter_mination of the critical temperature predicted by the
from a high temperature liquid‘ergodic”) state to a low idealized theory. - _ _ .
temperature arresteinonergodic”) state at a critical tem- At this stage it is tempting to consider how well the esti-
mates of T, from different approaches fit together and
whether theT, estimate from the nonergodicity parameters
*Permanent address: Gunadarma University, Jin. Margondaf the idealized MCT compares to the values from the full
Raya 100, Pondok—Cina Depok, Indonesia. MCT. Regarding this, we here investigate a molecular dy-
"Email address: teichler@umpa06.gwdg.de namics(MD) simulation model adapted to the glass-forming
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Nig ,Zfo g transition metal system. The Mir, _, system is in Refs.[17,33,34,18,1P The central object of the MCT are
well studied by experimen{®0,21 and by MD simulations the partial intermediate scattering functions that are defined
[22-30, as it is a rather interesting system whose compofor a binary system by35]

nents are important constituents of a number of multicompo-

nent “massive” metallic glasses. In the present contribution 1

— I

we consider, in particular, the=0.2 composition and con- Fijla.n= \/W<p (@.0p'(=9.0))
centrate on the determination ©f from evaluating and ana- o
lyzing the nonergodicity parameter, tigg,(T) parameter in 1 N N ) i J.
the ergodic regime, the diffusion coefficients, and the = \/ﬁ 21 le x(explig-[r,(t)—r,(0)]}),
a-decay relaxation time. Y

In the literature, similar comparison df. estimates al- 1)
ready exis{17-19 for two systems. The studies come, how- where

ever, to rather different conclusions. From MD simulations
for a soft spheres model, Barrat and LtZ] find an agree- N;
ment between the differerft; estimates within about 15%. p(q)=> €mai, =12 )
On the other hand, for a binary Lennard-Jones system, Nau- a=1
roth and Kob[19] get from their MD simulations a signifi- ) _ ) ) )
cant deviation between tHE, estimates by about a factor of IS @ Fourier component of the microscopic density of species
2. Regarding this, the present investigation is aimed at clari- , ,
fying the situation for at least one of the important metallic The diagonal termsy= g are denoted as the incoherent
glass systems. intermediate scattering function

Our paper is organized as follows: In Sec. Il, we present 1M
the model and give some details of the computations. Section FS(g.t)= — exolia-Tri () —r (0 3
Il gives a brief discussion of some aspects of the mode- .y N; azl< Rig-[ra(O=1a(01h). ()
coupling theory as used here. Results of our MD simulations ) _ _ ) )
and their analysis are then presented and discussed in The normalized partial and incoherent intermediate scat-

Sec. V. tering functions are given by
®;i(q,H)=F;(q,1)/S;(q), 4
Il. SIMULATIONS i(a.0=Fy(a.075;(a) @
The present simulations are carried out as state-of-the-art ®3(q,t)=F{(q,t1), )

isothermal-isobaric N, T,p) calculations. The Newtonian
equations ofN=648 atomq130 Ni and 518 Zrare numeri-
cally integrated by a fifth order predictor-corrector algorithm
with time stepAt=2.5x10 % s in a cubic volume with
periodic boundary conditions and variable box lendth
With regard to the electron theoretical description of the in- t _
teratomic potentials in transition metal alloys by Hausleitner F(q,t)+92(q)F(q,t)+J drM(q,t—7)F(q,7)=0, (6)
and Hafner[31], we model the interatomic couplings as in 0

[23] by a volume dependent electron-gas tep, (V) and  \hereF is the 2x 2 matrix consisting of the partial interme-

pair potentials¢(r) adapted to the equilibrium distance, giare scattering functions;;(q,t), and the frequency matrix
depth, width, and zero of the Hausleitner-Hafner potentialg,2

[31] for NigZrgg [32]. For this model, simulations were
started through heating a starting configuration up to 2000 K
that leads to a homogeneous liquid state. The system thenis  [2%(a)];j=0akgT(x; /mi@ SS Dy @
cooled continuously to various annealing temperatures with

cooling rate— ¢, T=1.5x 10'* K/s. Afterwards the obtained g(q) denotes the X 2 matrix of the partial structure factors
configurations at various annealing tempe_ratu(t_buere S;(a), x=N;/N, and m; means the atomic mass of the
1500-800 K are relaxed by carrying out additional isother- species. The MCT for the idealized glass transition predicts

laxed configurations is modeled and analyzed. More detaﬂgy

of the simulations are given in Rdf32].

where theS;;(q) =F;;(q,t=0) are the partial static structure
factors.

The basic equations of the MCT are the set of nonlinear
matrix integro-differential equations

is given by

M. (q,t)= kBTf dk > Vi (q,k)V k)
ll. THEORY ij(a, )—meixj (2m)? T 5 ik1 (0, K)Vijkr11(a,9
A. Nonergodicity parameters
X Fe (K, F 1 (g—k,t), (8)

In this section we provide some basic formulas that per-
mit calculation ofT and the nonergodicity parametéf(q) where p=N/V is the particle density and the vertex
for our system. A more detailed presentation may be found/;,z(q,k) is given by
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q-(gq—k) As indicated by Eq(16), computation of the incoherent
+ dikCil(q—K) (9  nonergodicity parametef’(q) demands that the coherent
nonergodicity parameters are determined in advance.

and the matrix of the direct correlation function is defined by

q-k
Vikl(Q-k):T5nCik(k)

B. g, parameter

cij(q)= %_[S—l(q)]ij i (10) Beyond the deta_ils of the MCT, equqtions of r_notion like
i Eqg. (6) can be derived for the correlation functions under
) ) o rather general assumptions within the Lanczos recursion
The equation of motion foF{(q,t) has a similar form as  gcheme[38] resp. the Mori-Zwanzig formalisni39]. The
Eq. (6), but the memory function for the incoherent interme- 5nhr0ach demands that the time dependence of fluctuations
diate scattering function is given by A, B, ... is governed by a time evolution operator like the
Liouvillian and that for two fluctuating quantitites a scalar

dk 1/qg-k product (B, A) with the meaning of a correlation function
S — = ) S(g— ’
Mi(q’t)_f (2m)3 p( q )(cF),(k,t)F,(q k.), can be defined. In case of a tagged particle, this leads for
(11) ®7(q,t) to the exact equation
. t )
(cP)i(k,t)=[c;i(a)I?Fii(a,t) +2cii(q)cij(q)Fij(q,t) <p?(q,t)/QS+<I>f(q,t)+fodrM?(q,t—T)dDis(q,T):O
+[cii(a)1Fji(a,t) j#i. (12 (17)

In or_der to char_acterize _the long time beh_a\_/ior of the i”'with memory kerneIM?(q,t) in terms of a continued frac-
termediate scattering function, the nonergodicity parameterg,
f(q) are introduced as Within M2(q,t) are hidden all the details of the time evo-
. S o
(@) =lim D (a,b). (13) !utlon of ®7(q,t). A.s pr%posed and appl!ed in Re[§5,1@,
instead of calculatingv;(q,t) from the time evolution op-
These parameters are the solution of E@—(10) at long  €rator as a continued fraction, it can be evaluated in closed
times. The meaning of these parameters is the following: iforms onced?(q,t) is known, e.g., from experiments or MD
f;;(a)=0, then the system is in a liquid state with density Simulations. This can be demonstrated by introduction of
fluctuation correlations decaying at long timesfifi(q) >0, , . .
the system is in an arrested, nonergodic state, where density P(w)Fidy(w)=limL{P}(eFiw), (18)

fluctuation correlations are stable for all times. In order to e0
computef;;(q), one can use the following iterative proce- with
dure[19]:
(0+2g) = S(q)-N[f('),;(')](q)-S(q) L{d}(z)= fo dte 2d(t) (19)
q_2|S(q)||N[f(l)'f(l)](q”S(q) 14 the Laplace transform ob(t), and
+ , (14
z M) +iM(w)g=lim LM} (e Fiw). (20)
e—0
Z=g?+Tr(S(q)-N[fV,{0](q))
+q‘2|S(q)||N[f('),f(')](q)|, Equation(17) then leads to
where the matrixN(q) is given b O (w)
() isg y M%(w).= Cz 5 (21)
m [1- 0Py(0) "+ [oP(w)]
Nii(q)= ——=M; (q). 15
i@ XikgT (@ (15 On the time axisM?(t) is given by
This iterative procedure, indeed, has two types of solu- 2 [«
tions, nontrivial ones withf(q)>0 and trivial solutions M?(t):;fo doM{(w), cog wt). (22)
f(g)=0.

The incoherent nonergodicity parametgi(q) can be

evaluated by the following iterative procedure: Equation(17) leads to an arrested state, that means to an

asymptotically finite correlatiody(q,t—)>0, if Mio(q,t
£+ 30 —) remains finite where the relationship has to hold
2 i

I e— s
TR ) MiTEf1(a). (16)

MP(q,t—o)[@(q,t—) 1-1]=1. (23)
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In order to characterize the undercooled melt and its transi- 05
tion into the glassy state, we introduced in REE5] the

function 04 %
G(P,MO):=MO(t)[ (1)1 1]. 24) <08 Iy

According to Eq.(23), G(®,M°) has the property that
G(®,M|_.=1 (25

in the arrested, nonergodic state. On the other hand, if
Om=maxG(®,M%)|0<t<x}<1, (26)

there is no arrested solution and the correlatidy§q,t)

decay to zero fot—o, that means, the system is in the
liquid state. From that we propos¢tls] to use the value of

On as a relative measure of the extent to which the system
has approached the arrested state and to use the temperature
dependence of,(T) in the liquid state as an indication of
how the system approaches this state.

IV. RESULTS AND DISCUSSIONS

A. Partial structure factors and intermediate scattering
functions

-1
First we show the results of our simulations concerning q (A

trt'e Sttat'c fpr‘ipe”'es of thg SyStt.eT in telr”:.s Offthe t.pa”'a' FIG. 1. Partial structure factors &= 1400, 1300, 1200, 1100,
structure fac orSS‘J(Q) and partial correlation functions 1000, 900, and 800 Kfrom top to bottory; (a) Ni-Ni part (the

9ij (r). , ) curves are vertically shifted by 0.05 relative to each dthés)
To compute the partial structure factdgg(q) for a bi- iz part (the curves are vertically shifted by 0.1 relative to each
nary system we use the following definiti¢40]: othed; and (c) Zr-Zr part (the curves are vertically shifted by 0.5

relative to each othgr

y(@ =xi8+pxx, | [9y()-1le "dr,  (27)
. o i ! that the positions of the first maximum and the first mini-

mum are more or less temperature independent, as also

where found, e.g., for theAy gBy » Lennard-Jones modé41].
Vv N; N In order to compare our calculated structure factors with
gij(r)= W< > S —[ru()—rg)]) experimental ones, we have determined the Faber-Ziman
iNj | a=1 g=1p+#a partial structure factora;;(q) [43]
(28)
are the partial pair correlation functions. aij(q)=1+pJ (9ij— 1)e”'9"dr, (30)

The MD simulations yield a periodic repetition of the

atomic distributions with periodicity length. Truncation of > 555
the Fourier integral in Eq27) leads to an oscillatory behav- a_nd the Faber Z|_man total structure _fa (@) [42]. F(.)rfi
binary system with coherent scattering lengttof specied

ior of the partial structure factors at smajl In order to the followina relationshio holds:
reduce the effects of this truncation, we compute from Eq. 9 P :
(28) the partial pair correlation functions for distancap to

R.=3/2L. For numerical evaluation of EG27), a Gaussian- FZ( ) — i 21,2 21,2
type damping term is included, Stor( ) (b)2[lelall(q)+xzb2a22(Q)
Re sin(qr +2x,X,b1bra15(q)]. (31
Sij(Q):Xiﬁij+477PXixjf r2[g;;(r)—1] r:;? ) 20D )]
0 In the evaluation o&;;(q), we applied the same algorithm
X exd — (r/R)?]dr (29) as for§;(q). By usinga;;(q) and with aids of the experi-
mental data of the average scattering lergtime can com-
with R=R_/3. pute the total structure factor. Here we takefrom the ex-

Figure 1 shows the partial structure fact&g(q) versus perimental data of Kuschkg20]. For natural Nib=1.03
q for all temperatures investigated. The figure indicates that 10”12 c¢m and for Ztb=0.716< 10" 2 cm. Figure 2 com-
the shape 0§;;(q) depends only weakly on temperature andpares the results of our simulations with the experimental
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herent intermediate scattering functichg(q,t) of both spe-

cies evaluated from our MD data for wave vectqy
=27n/L with n=9, that meansjg=21.6 nm *. The inco-
herent intermediate scattering functions display a rather simi-
lar behavior. From the figure we see that thg(q,t) of both
species show at intermediate temperatures a structural relax-
ation in three succesive steps as predicted by the idealized
schematic MCT[44]. The first step is a fast initial decay on
the time scale of the vibrations of atoms<{0.2 ps). This
step is characterized by the MCT only globally. The second
step is thep-relaxation regime. In the earlg regime the
correlator should decrease according ®g(q,t)="f.;;(q)
+A/t? and in the lateg-relaxation regime, which appears
only in the melt, according the von Schweidler law
®;i(g,t)=f¢;(q) —Bt®. Between them a wide plateau is
found near the critical temperatufie.. In the melt, thea
relaxation takes place as the last decay step after the von
Schweidler law. It can be described by the Kohlrausch-
Williams-Watts (KWW) law @;;(q,t)=A,exd —(t/7,)"],
where the relaxation time, near the glass transition shifts

FIG. 2. Comparison between our MD simulations and experi-drastically to longer times.

mental result§20] of the total Faber-Ziman structure fac85(q)
and the partial Faber-Ziman structure factafgq) for Nig oZrgg.

results by Kuschkg20] for the same alloy system at 1000 K.

The inverse power-law decay for the eagyregime ®
~f.+A/t? is not seen in our data. This seems to be due to
the fact that in our system the power-law decay is dressed by
the atomic vibrationg [15,16 and references thergin

There is a good agreement between the experimental and the According to our MD results;; (q,t) decays to zero for
simulation data which demonstrates that our model is able tfPnger times at all temperatures investigated. This is in
reproduce the steric relations of the considered system ampreement with the full MCT. Including transversal currents
the chemical order, as far is visible in the partial structureds additional hydrodynamic variables, the full MCZ]

factors.

comes to the conclusion that all structural correlations decay

To investigate the dynamical properties of the system, wén the final @ process, independent of temperature. Similar

have calculated the incoherent scattering functigiq,t)
and the coherent scattering functié; (q,t) as defined in

equations(1) and (3). Figure 3 presents the normalized co-

1.0 1

* a)
08 & g

= 3-*( o

Sos| E|]I™ ]

g +++\°%

o 0.4 k2 %, :
0.2 ° ]
0.0 X
10 [+ + 1

3 o
08 ¥'~\°%°° 1
306 ) ]
,t‘ ®
.e:tj 04 :o E
02 \ -
0.0 Nl
0™ 10" 10 10° 107

t(s)

FIG. 3. Coherent intermediate scattering functibp(q,t) for
q=21.6 nm ! at T=1500, 1400, 1300, 1200, 1100, 1000, 950,
900, and 800 K(from left to right; (a) Ni-Ni part and(b) Zr-Zr
part.

effects are expected from inclusion of thermally activated

matter transport, that means diffusion in the arrested state.
At T=800 K and 900 K, theb;;(q,t) drop rather sharply

at larget. This reflects aging effects that take place if a

system is in a transient, nonsteady s{at&]. Such a behav-

ior indicates relaxations of the system on the time scale of

the “measuring time” of the correlations.

B. Nonergodicity parameters

The nonergodicity parameters are defined by (#8g) as a
nonvanishing asymptotic solution of the MCT E@). Phe-
nomenologically, they can be estimated by creating a master
curve from the intermediate scattering functions with fixed
scattering vectorg at different temperatures. The master
curves are obtained by plotting the scattering functions
®(q,t) as function of the normalized timegr,. As an ex-
ample, Fig. 4 presents the master curvesdgfer21.6 nm !
constructed from the coherent scattering functions of Fig. 3.
In the asymptotic regime, the master curves can be approxi-
mated by the KWW lawd(q,t) =A(q)exd —(t/7,) ?], in
the late B regime by the von Schweidler lawb(q,t)
=f.(q)—B(t/,)P. The so-constructedi,(q) should agree
with the nonergodicity parameter. In our case, both laws are
good approximations of the master curves as demonstrated
by Fig. 4. Figure 5 presents the estimatpdependent non-
ergodicity parameters from the coherent scattering functions
of Ni and Zr, Fig. 6 presents those from the incoherent
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Tl NN AN a) ] 1 Ni (incoherent)
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& 0.4 ]
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0 t t f ; t ¢ a)
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N 0.4 . & 0.6 .
© =
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t/’ta 0

FIG. 4. Master curve for the coherent intermediate scattering q(A”)

function constructed from th& =900, 1000, 1100, 1200, 1300, ) ) ) )
1400, and 1500 K datédash-dotted line from left to right (a) FIG. 6. The same as Fig. 5 but for the incoherent intermediate
Ni-Ni part and(b) Zr-Zr part. The bold dashed line is a fit with the Scattering function(a) Ni part and(b) Zr part.

von Schweidler law; the bold solid line is a fit with KWW law.

endent partial structure facto§;(q) from the previous
ubsection. The iteration is started by arbitrarily
setting  Fyini(9,%2)@=0.55ini(A),  Fzrze(d,%)@
=0.55;,.2,(q), I:Ni—Zr(qioo)(o):O-

For T>1200 K we always obtain the trivial solution
analytically, we followed for our binary system the self- fij(a) =0 while atT=1100 K and below we get stable non-

consistent method as formulated by Nauroth and K@~ V@nishingfi;(q)>0. The stability of the nonvanishing solu-
and as sketched in Sec. IIlA. Input data for our iterativelions was tested for more than 3000 iteration steps. From
determination off;;(q)=F;;(q,*) are the temperature de- these results we expect t_h'ﬁ.; for our system lies bet_ween
1100 and 1200 K. To estimaie, more precisely, we inter-
polatedS;;(q) from our MD data for temperatures between
1100 and 1200 K by use of the algorithm of Presal.[46].

scattering functions. In Figs. 5 and 6 are also included thg
deduced KWW amplitude&(q) from the master curves and
from the intermediate scattering functions B&1100 K.
(The further fit parameters can be found[82].)

In order to compute the nonergodicity parametgyq)

Ni (coherent)

0.8 1 We observe that alf=1102 K a nontrivial solution of
= 06 i fij(q) can be found, but not afl=1105 K and above. It
= means that the critical temperatufle for our system is
0.4 1 around 1102 K. The nontrivial solutiorfs; (q) for this tem-
0.2 _ perature shall be denoted the critical nonergodicty param-
o a) etersfci;(q). They are included in Fig. 5. As can be seen

from Fig. 5, the absolute values and thelependence of the
calculatedf.;;(q) agree rather well with the estimates from
the scattering functions master curve and, in particular, with
the deduced KWW amplitudes(q) at 1100 K.

By use of the critical nonergodicity parametefis;(q),
the computational procedure was run to determine the criti-
cal nonergodicity parametef$;(q) for the incoherent scat-
tering functions af =1102 K. Figure 6 presents our results
for the so-calculated?;(q). Like Fig. 5 for the coherent
nonergodicity parameters, Fig. 6 demonstrates forf fe)
that they agree well with the estimates from the incoherent
scattering functions master curve and, in particular, with the
deduced KWW amplitudes(q) at 1100 K.

Regarding the good agreement between the nonergodicity
parameters and KWW amplitudes, our results reconfirm the
corresponding observation by Nauroth and Ka&B] in their
Lennard-Jones simulations. There is, however, a fundamen-

Zr {coherent)

FIG. 5. Nonergodicity parametdy;; for the coherent interme-
diate scattering functions as solutions of E¢#. and (8) (solid
line), KWW parameterA(q) of the master curve&diamond, von
Schweidler parametef.(q) of the master curvegsquarg, and
KWW parameteA(q) for ®;;(q) at 1100 K(triangle up; (a) Ni-Ni
part and(b) Zr-Zr part.
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10
2 Ni (incoherent) —
N @ g
g 5+ G
S
=
a)
0
15 -
Zr (incoherent) .
5 &
v 210 F o 05
'\1g (5
;j 5
>§ b) 00 Zr (incoherent)
00 02 04 06 08 1.0
0 . — = = S
7% 10 10  10° (g
Ks) FIG. 8. MD simulation results for the characteristic function

s ; s _ 1. ;
FIG. 7. Time dependence of the dimensionless memory functioﬁgﬁ ) as a function ofbyfor q=21.6 nm = (@) Ni part and(b) zr

M2(q,t)/Q2_, from MD simulations forge=21.6 nm* and T
=800, 900, 950, 1000, 1100, 1200, 1300, 1400, and 15@fdtn
top to bottom; (a) Ni part and(b) Zr part. the high temperature regime, the valuesggf{q,T) move
with decreasing temperature towards the limiting value 1.
tal difference between our results and the Lennard-Jones carhis is, in particular, visible in Fig. 9 where we present
culations concerning the value ®f. TheT; value of 1102 g¢,(q,T) as a function of temperature for both species, Ni
K determined for the present model from the nonergodicityand Zr, and wave vectorsgg=19.2 nm! and qq
parameters agrees within 10—15% with fhevalues from  =21.6 nm!. At temperatures above 1000 K, thg values
other estimates, as we shall demonstrate in the followingncrease approximately linear towards 1 with decreasing
sections, while a deviation by a factor of 2 was found in thetemperatures. Below 1000 K, they remain close below the
Lennard-Jones modelirid9]. limiting value of 1, a behavior denoted in Ref45,16 as a

C. (@}, Mio) function and g,, parameters 1 T T T

Here we present our results about (&b}, Mio) func-
tion [15,16 described in Sec. Il B. The memory functions 09 1
Mio(q,t) are evaluated from the MD data fdbj(q,t) by g 08
Fourier transformation along the positive time axis. For com- ~ .
pleteness, alsd@ =800 and 900 K data are included where o 07 fgs E::ggﬂ::g:g 1
the correspondingb(q,t) are extrapolated to longer times 06 | ’ ]
by use of an KWW approximation.

Figure 7 shows the thus deducell?(q,t) for q 02
=21.6 nm!. Regarding their qualitative features, the ob-
tainedMiO(q,t) are in full agreement with the results in Ref. 09 r
[16] for the NiysZry5 system. A particular interesting detail ~ o8 |
is the fact that there exists a minimum ﬁmio(q,t) for both ‘3%5 ’
species, Ni and Zr, at all investigated temperatures around a =07t 2.q, (incoherent) .
t!me of 0.1 pS. Below this timeP(q,t) r(_eflects the vibra- 06 | qu (incoherent) ]
tional dynamics of the atoms. Above this value, the escape : b)
from the local cages takes place in the melt and@dhregime . : : w
dynamics are developed. Apparently, the minimum is related 800 1000 1200 1400
to this crossover. T(K)

By use OI theo calculated memory fun(_:tlons, we can evalu- FIG. 9. MD simulation results of the temperature dependence of
ate theg(®;,My), Eq. (24). In I_:lg. 8 this quantity is pre- n(Q,T) for gs=19.2 nm* (squares and ge=21.6 nm* (dia-
sented versus the corresponding valuedg{q,t) and de-  monds. Linear fits to theg,,(q,T) are included by full and dashed
noted asg(®;). For all the investigated temperaturgéd?) lines (for gg=19.2 nm* and gy=21.6 nm'*, respectively; (a)
has a maximung,,(q,T) at an intermediate value @b. In  Zr part with T,=1020 K and(b) Ni part with T,.=970 K.
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balancing on the borderline between the arrested and the

nonarrested state due to thermally induced matter transport FIG. 11. Diffusion coefficient®; as a function of 10007. Sym-

by diffusion in the arrested state at the present high temperdols are MD results for Nisquaresand Zr(diamonds; the full line

tures. are power-law approximations for Ni and for Zr, respectively.
Linear fit of theg,, values for Ni above 950 K and for Zr
above 1000 K predicts a crossover temperafifidrom lig-  indicates a change of slope around a value of 840 K that we

uid (g,<1) to the quasiarrestedyf=1) behavior around identify with T¢ for the applied cooling rate. Compared with
970 K from the Ni data and around 1020 K from the Zr data.the Tc value from theg,, parameters, thég obtained here is
We here identify this crossover temperature with the value ofower thanT. by 160 K. Thus, for the present fiZrog
T. as visible in the ergodic, liquid regime and estimate it bycomposition, the temperature difference betw&erand Tg

the mean value from the Ni and Zr subsystems, that meand larger than that for NisZros, Tc—Te=70 K[15,16, al-
by T.=1000 K. though a lower cooling rate was used there. It is rather tempt-

While in Refs[15,16] for the Niy &1y s melt aT, value of ing to look for MD model systems with an extended tem-
1120 K was estimated from,(T), the value for the present Perature regime betweeR, and Tg in order to study the
composition is lower by about 120 K. A significant compo- dynamics in this region. At the present stage, however, we
sition dependence oF, is expected according to the results Cannot give any indication for the mechanisms that deter-
of MD simulation for the closely related Cor,_, system Mine the change of .— T with composition at a fixed cool-

[48]. Over the wholex range, T, was found to vary between ing rate.

1170 and 650 K in CZr; _,, with T;(x=0.2)=800 K. Re- Diffusion coefficientsFrom the simulated atomic motions
garding this, the present data for the Kt _, system reflect [N the computer experiments, the diffusion coefficients of the
a rather weakT . variation. § Ni and Zr species can be determined as the slope of the
¢ atomic mean square displacements in the asymptotic long-
D. Caloric glass temperature, diffusion coefficients, and time limit
a-relaxation time N;
. . " _ 2
The present section provides additional results of our (1/Ni)azl [r (1) —14(0)]
simulations aimed to enlighten tHg estimates of the previ- D;(T)=Ilim ot (32
ous section. t—oo

Caloric glass temperature J. First we consider the ca-
loric glass temperaturég as observed, e.g., in the specific Figure 11 shows the thus calculated diffusion coefficients
heat or, equivalently, by a change of slope in the enthalpy v&f our Niy2Zry g model for the temperature range between
temperature dependence. For the rapid quench situatic®00 and 2000 K. At temperatures above approximately 1250
modeled by our simulationsTg depends strongly on the K, the diffusion coefficients for both species run parallel to
cooling rate. It indicates the temperature below which theeach other in the Arrhenius plot, indicating a fixed ratio
system with decreasing temperature falls out of equilibriumPni/Dz,~2.5 in this temperature regime. At lower tempera-
as the relaxation time becomes too large compared with thiires, the Zr atoms have a lower mobility than the Ni atoms,
cooling rate. yielding around 90 K a value of about 10 foDy;/Dy, .
Figure 10 displays our simulation results. We present fofThat means, here the Ni atoms carry out a rather rapid mo-
a cooling rate of 18 K/s the reduced enthalpy per atom, tion within a relative immobile Zr matrix.
(H)—3kgT, as a function of temperature. The subtracted According to the idealized MCT, aboVE, the diffusion
term T means the averaged thermal vibration energy ofoefficients follow a critical power law
an atom and its subtraction makes more obvious the configu-
ration dependent energy contributid@]. Figure 10 clearly Di(T)~|T—T|” for T>T, (33
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with nonuniversal exponeng [47,44). The upper and lower 10° —————————
temperature of validity of this relation are not well known. .
While the idealized theory predicts a validity of the critical 10 L 4

&

power law for an unspecified limited regime abovg, the
effects of transverse currents in the full MCT and thermally
activated processes yield around and belbwa predomi- 107 ¢
nance of additional channels of matter transport beyond
those described by this relation. Accordingly, this law is not
expected to be fulfilled close B, and far abovd ;. For the
mid-concentration system pNiZry 5, the MD study[24] has
shown that the critical law witfT . from ag,, analysis holds
rather well in the temperature range of about 100-900 K
aboveT.. Regarding this, in order to test the relation Eq. 107 ¢
(33) and its usefulness for getting a raw estimateTgffor

the present low-Ni-content system, we have adapted the criti- 10° S R
cal power law by a least mean squares fit to the simulated 0809 1.0 1.1 1.2 1.3 14 15 16
diffusion data aboveT,,,=1050 K. As proposed in Ref. T (10°K)

[48], the lower _Iimi_t Tmin .Of the dgta includeq in the Tit is FIG. 12. a-relaxation timer,(q) as a function ofT(K)/1000
taken from looking in the intermediate scattering function for, q,=9.6 nnT! and q9:21'g nnl. The lines are the corre-

aging effects on the time scale of the simulatiolgin IS gponding power-law fitssee Table I for exponent parameteand

introduced as the lower temperature limit for which no agingr .

effects are detected. The results of the fit are presented in

Fig. 11 by dashed lines. The fit leads to a critical temperature , . o

of 950 K. The parameters turn out as 1.8 for the Ni sub- =9.6 M ~andge=21.6 nm " are presented in Fig. 12 for

system and 2.0 for the Zr system. Ni and' Zr, for the incoherent and partly for the coherent
Similar results for the temperature dependence of the difScattering. . .

fusion coefficients have been found in MD simulations for ~According to the idealized MCT, the,(q,T) for tem-

other metallic-glass-forming systems, e.g., fog M, 5[24], ~ Peratures abové follow a critical power law

for Ca Zr,_ [48], Cly.3Zrg 67[49], or Nig 1B 19[50]. In all

cases, like here, a break is observed in the Arrhenius slope.

In the mentioned Zr systems, this break is related to a change

of the atomic dynamics aroundl, whereas for Njg:Bg 19

system it is ascribed tdg. As in Ref.[50] Tc and Tg  also with nonuniversal parameter Regarding the validity
apparently fall together, there is no serious conflict betweeryf this relationship, the same arguments hold as for(B8.

1(q) (fs)
3

(0, T)~[T=T¢| 7 (34)

the obervations. . ~and estimations of ., from the relationship forr,(q,T) are
A comment is necessary here concerning the comparisogpjected to the same limitations as those fldfT).
with experiments. Experimentally, aroufi¢ a break is ob- Having in mind these limitations, we present in Fig. 12

served in the Arrhenius slope in a number of investigationgeast squares fits of the critical power law to the obtained
[51-54 while the vicinity of the presumed, is not covered 7,(q,T) values for temperatures abo¥g,,. The values of

by the present diffusion studies of thg metallic glass_es anqLc and of they parameter determined in this way are given
melts. According to our understanding, a break in thepy Taple I. TheT, thus estimated varies between 990 and
Arrhenius slope is expected arourid as it reflects the 1015 K and is slightly higher than from the diffusion coeffi-
change of the mechanism of structural dynamics descrlbegiems, but in good agreement with the value from the

by the MCT. In Refs[51-53, the break arounds is as-  parameter. They parameter for Ni and Zr varies between
cribed to a change in frequency and phase space volumgyoyt 1.8 and 2.0. For temperatures below 1000 K, the
explored by the fluctuations when passilg . It depends ;. (q T) values lie below the critical law and indicate that
significantly on the interplay between the time scale of thene structural correlations in this temperature regime decay

structural fluctuations and the hopping rate of the diffusingby relaxation channels not included in the idealized MCT.
atoms, yielding that the break in the Arrhenius slope takes

place at different temperatures for different diffusing species.
Recent experiment§55] indicate that the break vanishes
with further, more complete relaxation of the glassy state an
that it thus, apparently, reflects a difference in the degree of

TABLE I. Critical temperatureT, and parametery from the
dy-relaxation time.

. Incoherent Coherent
structural relaxation of the system above and belgy Ni 7r Ni 7r
a-relaxation time The a-relaxation timer (g, T) charac-
(4. T) qualies  T(K) ¥ TaK) ¥ TuK) ¥ TdK) v

terizes the time at which the final decay of the scattering
functions takes place. Suitable estimates of this time can b§=9.2 nnt* 990 1.8 1000 1.8

obtained by fitting a KWW law to the scattering functions atq=21.6 nm! 1010 1.9 1010 1.9 1015 2.0 1000 2.0
times beyond theB regime. Values 7,(q,T) for qu
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' T to diffusion effects missing in Eq8). Significant deviations

500 1 are especially seen in the 1200 K curves. Here the calculated
400 1§ M$(q,t) show a rather rapid decay, basically induced by
300 | interference effects in the evaluation of the momentum inte-
200 grations of Eq(8). It remains an open question whether for

Y 100 | this temperature an improved agreement between calculated

i ol : M?(q,t) and estimated/lio(q,t) can be obtained by inclusion

A - = = = of the coupling to transverse currents in the memory kernel

S 500 ¢ 2 B ] formula as provided, e.g., by Gudowsi al. [57].

Ty 400 \\

= 300 | V. CONCLUSION

§< 200 | The present contribution reports results from MD simula-
100 ¢ tions of a N} »Zry g computer model. The model is based on

i N
DR . &
s o

ol - the electron theoretical description of the interatomic poten-
107 10-° 102 10 10-° 107 tials for transition metal alloys by Hausleitner and Hafner
£(s) [31]. There are no parameters in the model adapted to the
experiments. Comparison of the calculated structure factors
FIG. 13. Comparison betweel(q,t) from MD simulations  with experiments[20] indicates that the model is able to
(full lines) and MCT results(dashed lines and symbolfor the  reproduce sufficiently well the steric relations and chemical

memory function ag=21.6 nm * and T=900, 1000, 1100, and  order in the system, as far as visible in the structure factors.

1200 K (from top to bottory; (a) Ni part and(b) Zr part. There is close agreement between Thevalues estimated
from the dynamics in the undercooled melt when approach-

E. Memory function for the incoherent intermediate ing T, from the high temperature side. The values @ge

scattering function ~970-1020 K from they,, parametersT.~990-1015 K

Having evaluated in Sec. IVC the memory function from the a-relaxation time, and';~950 K from the diffu-

MO(q,t) from the time evolution of the incoherent interme- Sion coefficients. As discussed in Rpt8], the T estimates
diate scattering function, it is tempting to compare this ker-fom the diffusion coefficients seem to depend on the upper
nel with the prediction of the MCT. For comparison, we uselimit of the temperature region taken into account in the fit,
for this kernel the MCT expression from the idealized theoryWhere an increase of the upper limit increases the estimated
that takes into account the density fluctuations and their coulc- Accordingly, there is evidence that the present value of
pling to the longitudinal currents in the “one-loop” approxi- 950 K may underestimate the trlig by about 10-50 K, as
mation and is given by Eq8). The latter expression is aug- 1S based on an upper I|_m|t of 2000 K only. Taking this into
mented according to the proposal of Balucani and Z¢pej ~ account, the present estimates from the melt seem to lead to

by adding explicitly toM(q,t) a binary collision term @& Tc value around 1000 K. _
gi(a,t) and replacing for compensatioR{(q,t) with The T, from the nonergodicity parameters describe the

FS(q.)—FS,(q.t), that means subtraction of the ballistic approach of the system towards from the low temperature

part FS’i(q,t)=exp(—q2t2kBT/2mi). In order to include the side. They predict d value of 1100 K. This value is out-

effects of the attractive interaction potential between the at-SIde the range off estimates from the so-called ergodic

i U . melt. There is, however, fair agreement between the data,
oms and the therefrom resulting vibrations as far as p035|bl%nd our results reconfirm the finding from the soft spheres
we substitute the binary collision term;i(q,t) with the

- o e
short time expression proposed by Balucani and Z656] model[18] of an agreement within 10% between the differ

ith ch reristic ti dapted t imulati entT. estimates.
with charactenstic imery(q) adapte 2 our simuiations. Further, we compared the memory kerndl§q,t) evalu-
Figure 13 presents our results fbt7(q,t) as obtained

. . . ated from the MCT formula with the kerneMiO(q,t) from
according to Eq(8) with the above-mentioned amendmemsinverting the time evolution of the intermediate scattering

by use of the s!mulated pamal structure factors and th? SIMY nctions. The comparison shows encouraging agreement at
lated intermediate scattering functions. Included are in Fig

0 . . ) 900-1100 K while significant deviations are found at 1200
ﬁi;?]e(;?%?qeozzclfggfelﬂg Er?gé)rr;rgé?a:peviggge?:gtmﬁc?i\g: as;[K' As already mentioned, it is an open question whether for
. . . . “%his temperature an improved agreement between calculated
described in Sec. IV C. Figure (88 demonstrates that for Ni P x g

the magnitude of the memory kernb12(q,t) in the time i(0.t) and estimatedf; (q,t) can be obtained by inclusion

. ) of the coupling to transverse currents in the memory kernel
windows between 10 and 10°'° s is well reflected by the ¢y mula Ping y

calculatedM;(q,t) for the temperature around 1100 K and
below. Figure 1®) indicates that for Zr in the same time
and temperature range the calculakf{q,t) seem by about
30—40 % below the estimatéd?(q,t). Deviations are found A.B.M. gratefully acknowledges financial support of the
at 900 K in the long time behavior. There the calulcatedDeutscher Akademischer Austauschdie(@BAAD) during
M?(q,t) is found above the estimatemio(q,t), perhaps due the course of the study.
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